Original Article
Magnitude and Mechanism of Siderophore as a Potential Tool in Eco Friendly Agriculture
Year: 2020 | Month: June | Volume 7 | Issue 1
1.Aguado-Santacruz, Moreno-Gómez, Jiménez-Francisco, García-Moya and Preciado-Ortiz. 2012. Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: a synthesis. Rev. Fitotec Mex., 35: 9-21.
View at Google Scholar2.Ahmed, E. and Holmstrom, S.J.M. 2014. Siderophores in environmental research: roles and applications. J. Microbial. Biotechnol., 7: 196–208.
View at Google Scholar3.Ali, S.S. and Vidhale, N.N. 2013. Bacterial siderophore and their application: a review. Int. J. Curr. Microbiol. App. Sci., 2(12): 303-312.
View at Google Scholar4.Bakker, P.A.H.M., Lamers, J.G., Bakker, A.W., Marugg, J.D., Weisbeek, P.J. and Schippers, B. 1986. The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Netherlands Journal of Plant Pathology, 92(6): 249-256.
View at Google Scholar5.Behrends, T., Krawczyk-Bärsch, E. and Arnold, T. 2012. Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories. Appl. Geochem., 27: 453–462.
View at Google Scholar6.Boos, W. and Eppler, T. 2001. Prokaryotic binding proteindependent ABC transporters. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH, Weinheim, pp. 77–114.
View at Google Scholar7.Braud, A., Geoffroy, V., Hoegy, F., Mislin, G.L.A. and Schalk, I.J. 2010. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ. Microbiol., 2: 419–425.
View at Google Scholar8.Braud, A., Jézéquel, K., Bazot, S. and Lebeau, T. 2009. Enhanced phytoextraction of an agricultural Cr and Pbcontaminated soil by bioaugmentation with siderophoreproducing bacteria. Chemosphere, 74: 280–286.
View at Google Scholar9.Buysens, S., Heungens, K., Poppe, J. and Hofte, M. 1996. Involvement of Pyochelin and pioverdin in suppression of Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol., 62(3): 865–871.
View at Google Scholar10.Chaiharn, M., Chunhaleuchanon, S., Kozo, A. and Lumyong, S. 2008. Screening of rhizobacteria for their plant growth promoting activities. J. KMITL Sci. Tech., 8: 18-23.
View at Google Scholar11.Chhibber, S., Nag, D. and Bansal, S. 2013. Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol., 13: 174-183.
View at Google Scholar12.Crowley, D.A. 2006. Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, pp. 169–189.
View at Google Scholar13.Dell’mour, M., Schenkeveld, W., Oburger, E., Fischer, L., Kraemer, S. and Puschenreiter, M. 2012. Analysis of iron-phytosiderophore complexes in soil related samples: LC-ESI-MS/MS versus.CE-MS. Electrophoresis, 33: 726–733.
View at Google Scholar14.Duhme, A.K., Hider, R.C., Naldrett, M.J. and Pau, R.N. 1998. The ability of the molybdnem azotochelin complex and its effect on siderophore production in Azotobacter vnelandii. J. Biol. Inorg. Chem., 3(5): 520–526.
View at Google Scholar15.Edberg, F., Kalinowski, B.E., Holmström, S.J.M. and Holm, K. 2010. Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Geobiology, 8: 278–292.
View at Google Scholar16.Edi Husen. 2003. Screening of soil bacteria for plant growth promotion activities in vitro. Indo. J. Agric. Sci., 4(1): 27-31.
View at Google Scholar17.Elad, Y. and Baker, R. 1985. Influence of trace amounts of cations and siderophore producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Ecol. Epidemiol., 75: 1047-1052.
View at Google Scholar18.Ferreira, M.J., Silva, H. and Cunha, A. 2019. Siderophore- Producing Rhizobacteria as a Promising Tool for Empowering Plants to Cope with Iron Limitation in Saline Soils: A Review. Pedosphere., 29(4): 409-420.
View at Google Scholar19.Gamalero, E. and Glick, B.R. 2011. Mechanisms used by plant growth promoting bacteria. In: Bacteria in agrobiology: plant nutrient management. Springer, Berlin, Heidelberg, pp 17–46.
View at Google Scholar20.Gamit, D.A. and Tank, S.K. 2014. Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). Int. J. Res. Pure Appl. Microbiol., 4(1): 20-27.
View at Google Scholar21.Gangwar, M. and Kaur, G. 2009. Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and rye grass. Internet J. Microbiol., 7: 139–144.
View at Google Scholar22.Glick, B.R., Patten, C.L., Holguin, G. and Penrose, D.M. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London.
View at Google Scholar23.Hamdan, H., Weller, D. and Thomashow, L. 1991. Relative importance of fluorescens siderophores and other factors in biological control of Gaeumannomyces graminis var. Tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol., 57(11):3270–3277.
View at Google Scholar24.Hu, X. and Boyer, G.L. 1996. Siderophore-mediated aluminium uptake by Bacillus megaterium TCC 19213. Appl. Environ. Microbiol., 62: 4044–4048.
View at Google Scholar25.Kloepper, J.W., Leong, J., Teinize, M. and Schroth, M.N. 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature., 286: 885-886.
View at Google Scholar26.Kobayashi, T., Nakanishi, H. and Nishizawa, N.K. 2010. Recent insights into iron homeostasis and their application in graminaceous crops. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 86: 900–913.
View at Google Scholar28.Litwin, C.M. and Calderwood, S.B. 1993. Role of iron in the regulation of virulence genes. Clin. Microbiol. Rev., 6: 137-149.
View at Google Scholar29.Loper, J.E. and Henkels, M.D. 1999. Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol., 65: 5357–5363.
View at Google Scholar30.Mahmoud, A.L.E. and Abd-Alla, M.H. 2001. Siderophore production by some microorganisms and their effect on Bradyrhizobium-Mung Bean symbiosis. Int. J. Agric. Biol., 03(2): 157–162.
View at Google Scholar31.Masuda, H., Usuda, K., Kobayashi, T., Ishimaru, Y., Kakei, Y. and Takahashi, M. 2009.Over expression of the barleynicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice, 2: 155–166.
View at Google Scholar32.Mc Loughlin, T., Quinn, J., Bettermann, A. and Bookland, R. 1992. Pseudomonas cepaciasuppressi on cepacia suppression of sunflower. Pseudomonas cepacia. Wilt fungus and role of antifungal compounds in controlling the disease. Applied and Environmental Microbiology, 58(3): 1760-1763.
View at Google Scholar33.Nair, A., Juwarkar, A.A. and Singh, S.K. 2007. Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut., 180: 199–212.
View at Google Scholar34.O’Brien, S., Hodgson, D.J. and Buckling, A. 2014. Social evolution of toxic metal bioremediation in uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Geobiology, 8: 278–292.
View at Google Scholar35.Pahari, A. and Mishra, B.B. 2017. Characterization of Siderophore producing Rhizobacteria and its effect on growth performance of different vegetables. Int. J. Curr. Microbiol. App. Sci., 6(5): 1398–1405.
View at Google Scholar36.Powell, P.E., Cline, G.R., Reid, C.P.P. and Szaniszlo, P.J. 1980. Occurrence of hydroxamate siderophore iron chelators in soils. Nature, 287: 833–834.
View at Google Scholar37.Rajkumar, M., Ae, N., Prasad, M.N.V. and Freitas, H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol., 28: 142–149.
View at Google Scholar38.Ruggiero, C.E., Neu, M.P., Matonic, J.H. and Reilly, S.D. 2000. Interactions of Pu with desferrioxamine siderophores can affect bioavailability and mobility. Actinide Res. Q., pp. 16-18.
View at Google Scholar39.Rungin, S., Indananda, C., Suttiviriya, P., Kruasuwan, W., Jaemsaeng, R. and Thamchaipenet, A. 2012. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van. Leeuwenhoek, 102(3): 463–472.
View at Google Scholar40.Schalk, I.J., Hannauer, M. and Braud, A. 2011. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol., 13: 2844–2854.
View at Google Scholar41.Seuk, C., Paulita, T. and Baker, R. 1988. Attributes associate with increased biocontrol activity of fluorescent Pseudomonads. J. Plant Pathol., 4(3): 218- 225.
View at Google Scholar42.Sneh, B., Dupler, M., Elad, Y.and Baker, R. 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium suppressive soils. Phytopathology, 74: 1115-1124.
View at Google Scholar43.Tortora, M.L., Díaz-Ricci, J.C. and Pedraza, R.O. 2011. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives of Microbiology, 193(4): 275-286.
View at Google Scholar44.Verma, V.C., Singh, S.K. and Prakash, S. 2011. Biocontroland plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica Juss. J. Basic Microbiol., 51: 550–555.
View at Google Scholar45.Von Gunten, H.R. and Benes, P. 1995 Speciation of radionuclides in the environment. Radiochim. Acta., 69: 1-29.
View at Google Scholar46.Wang, Q., Xiong, D., Zhao, P., Yu, X., Tu, B. and Wang, G. 2011. Effect of applying an arsenic resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populusdeltoides LH05–17. J. Appl. Microbiol., 111: 1065–1074.
View at Google Scholar47.Weinberg, E.D. 2004. Suppression of bacterial biofilm formation by iron limitation. Med. Hypotheses., 63: 863-865.
View at Google Scholar48.Wichard, T., Bellenger, J.P., Morel, F.M. and Kraepiel, A.M. 2009. Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ. Sci. Technol., 43: 7218–7224.
View at Google Scholar




